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Abstract

Currently, the experimental uncertainty in determining the o-Ps decay rate is at 150 ppm
precision, which is two orders of magnitude lower than the theoretical precision of 1 ppm.
A new method proposed in [1] aims to achieve an ultimate precision of 1 ppm, enabling
a direct examination of higher-order QED corrections. A deviation between theoretical
and experimental results would indicate a potential hidden sector in the standard model,
which could be a candidate for dark matter.
To achieve this level of precision, it is essential to differentiate between 2γ and 3γ events
in the detector, thereby eliminating the time-dependent pick-off annihilation rate that
distorts the observed o-Ps decay rate. This thesis presents a discrimination model based
on a cut-based pre-selection and a machine learning algorithm for fine-tuning the 2γ and
3γ event separation. The model has been trained and tested using data generated with
the Geant4 simulation framework. Finally, an outlook on how to apply the model to real
data is provided.
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Chapter 1

Introduction

The bound state between an electron e− and a positron e+ is an exotic atom known as
Positronium (Ps). Unlike the hydrogen atom, Ps is a purely leptonic system and therefore
does not undergo any influence of the strong force described by Quantum Chromodynam-
ics (QCD). It is therefore an ideal system to perform high precision tests of Quantum
Electrodynamics (QED) and to search for new physics beyond the Standard Model (SM).

The Ps atom can exist in two different spin states, the singlet state 1S0 where the spins
of the electron and positron are anti-parallel (p-Ps) and the triplet state 3S1 where the
spins are parallel (o-Ps). Due to conservation of charge conjugation and parity in QED,
the o-Ps state decays into three photons, while the p-Ps state decays into two photons.
The decay time of the o-Ps state is therefore suppressed compared to the p-Ps state.

The theoretical prediction for the decay width of the o-Ps state is up to O(α2) given
by λo-Ps = 7.039 934(10) µs−1 [2]. The most accurate experimental measurements are
in accordance with this prediction and deliver a value of λo-Ps = 7.0404(10) µs−1 [3].
However, the theoretical prediction for the decay width of the p-Ps state is two orders
of magnitude more accurate. In order to test QED to the next order, it would thus be
beneficial to have more accurate measurements.

One of the main challenges in the experimental determination of the o-Ps decay width
are pick-off annihilations of the produced Ps atoms with electrons of the target material
or the vacuum cavity walls. Due to these pick-off annihilations, the observed decay rate
of o-Ps is modified to

λobs(t) = λoPs + λpick(t), (1.1)

with λpick(t) being proportional to the rate of o-Ps collisions with the target material or
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the vacuum cavity

λpick(t) = nσav(t), (1.2)

where n is the atomic density of the material, σa the annihilation cross section, and v(t)
the time dependent velocity of o-Ps. In order to extract the intrinsic o-Ps decay rate, it
is thus crucial to precisely account for the contribution of the pick-off annihilation rate.

Past o-Ps lifetime measurements conducted in Ann Arbor consisted of an e+ beam hitting
a target material with a variable density known to have a high Ps production rate. By
varying the target density and the beam intensity in a controlled manner, it has been
achieved to extract the intrinsic o-Ps decay rate in vacuum by extrapolating the results,
which however also forms the main source for the systematic uncertainty of 100 ppm [3].

A different approach to measure the o-Ps decay rate without the need of extrapolation has
been employed by a research group in Tokyo. The group uses a 22Na source undergoing a
β+ decay to produce positrons surrounded by a silicon-dioxide (SiO2) powder. The time
and energy of the o-Ps annihilation photons are measured simultaneously with germanium
detectors. By subtracting a 3γ spectrum obtained with Monte Carlo simulations from the
experimental data, they were able to isolate the 2γ spectrum and determine λpick(t)/λ3γ

as a function of time. After this step, the cleansed data has been fitted to determine the
vacuum decay rate of o-Ps. The normalization procedure of the 3γ spectrum gives the
biggest contribution to the systematic uncertainty of 90 ppm [4].

A new way of measuring the decay rate of o-Ps that could eventually reach a precision
of 1 ppm has been proposed by [1] in 2018. The idea is to use a high intensity e+ beam
to form o-Ps with a porous SiO2 film and confine it in a vacuum cavity surrounded by a
nearly hermetic, granular calorimeter to detect the annihilation photons. The cavity is
additionally sealed with a thin membrane transmissive to e+, but not to o-Ps, therefore
confining the o-Ps in the cavity. Due to the granularity of the calorimeter, it is possible to
discriminate 2γ and 3γ events, making it possible to more accurately isolate the intrinsic
o-Ps decay rate.



Chapter 2

Monte Carlo (MC) Simulations in
Geant4

Before the experimental results are being discussed, let us take some time to take a
look at a simulation within the Geant4 framework. The procedure will be as follows:
First, the geometry and implementation of the “Super Duper Mega Detector” (SDMD) in
Geant4 will be introduced. The simulation allows to generate data for 2γ and 3γ events
independently to an arbitrary amount. For each simulated event, it is possible to store
the energy detected in each LYSO crystal of the SDMD. The simulation can be made
more realistic by adding additional complexities such as a Gaussian energy smearing to
resemble the limited energy resolution of the crystals.

The ultimate goal of the simulation is to discriminate between 2γ and 3γ events to later
be able to identify and subtract the pick-off annihilations from the o-Ps decay spectrum.
This makes it possible to isolate the intrinsic o-Ps decay rate and reduce the systematic
uncertainty of the o-Ps lifetime measurement.

2.1 Geant4 Simulation of the SDMD

A simplified version of the SDMD being used at ETH Zurich has been implemented in
Geant4 by Benjamin Banto Oberhauser. A drawing of the detector is shown in figure
2.1. It consists of two modules A and B, attached to the left and right side of the SiO2

target. Each module consists of two detector units, which form an 8 by 8 matrix of LYSO
crystals. The following parameters have been chosen for the geometry of the detector:

• Distance between the two modules: 100mm
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4 2.2. Results of the Geant4 Simulation

• Distance between the two units: 2.8mm

• Geometry of LYSO crystals: x- and y-direction: 2.5mm, z-direction: 30mm.

x

z

e+

Target

Module A Module B

x

y

Figure 2.1: Drawing of the SDMD detector. Left: x − z plane view, right: x − y plane
view. The blue areas represent the LYSO crystals. The e+ beam emitted by a radioactive
22Na source undergoing β+-decay enters from the −x-direction and impinges on an SiO2

target to produce Ps at high rates.

2.2 Results of the Geant4 Simulation

The Geant4 simulation has been run for 107 2γ and 3γ events respectively, but most of
them are not measured in the detector due to small solid angle coverage. In the end, more
than twice as many 3γ events are captured in the SDMD, implying a signal-to-background
ratio of less than one half.

As a first step, the total energy depositions in the two modules are computed and shown
in a two dimensional histogram in figure 2.2. The histogram for the 2γ case is shown on
the left and for the 3γ case on the right. As expected, for most of the 2γ events, the
energy deposition in the modules is either 0 keV or 511 keV, visualized by the three yellow
vertices. On the other hand, due to the increased phase space of the 3γ case, the energy
distribution is more spread out. Still, the probability for an energy deposition of 511 keV
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in both detectors is not zero as can be seen by the green vertex. This is due to the fact
that the angle between the directions of propagation of two out of the three photons might
be very small, causing them to be detected in the same module. On the other hand, it
can also happen that one of the three photons only has a small energy, while the other
two carry an energy around 511 keV.

Figure 2.2: 2D histogram of the total energy deposited in the two modules of the SDMD
(cf. fig. 2.1) for 2γ (left) and 3γ (right) events. Although a total of 107 events were
simulated for both types, more than twice as many 3γ as 2γ events are detected in the
SDMD due to the increased angular coverage of the 3γ events.

The same procedure has been repeated for the more realistic case of a smeared energy
deposition which in the experiment is given due to the limited energy resolution of the
LYSO crystals. In this case, a Gaussian energy smearing with an energy dependent
standard deviation of1

σ(E) = σ(E0)

√
E

E0

(2.1)

has been chosen. In practice, this means that the results from the simulations run with
no energy smearing are taken, and every energy E measured in the LYSO crystals is
replaced by a new energy E ′ drawn from a Gaussian distribution with mean E and
standard deviation σ(E). According to the datasheet, the LYSO crystals used in the
SDMD have a relative energy resolution of FWHM(E0)

E0
= 8% for E0 = 662 keV, which will

be used in the following. FWHM stands for full width at half maximum and it can easily
1The proportionality to the square root of the energy is a result from photo statistics and is linked to

the central limit theorem.

https://www.luxiumsolutions.com/sites/default/files/2023-08/142266_Luxium_LYSO-Material-Data-Sheet_FIN.pdf
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be verified that it is related to the standard deviation σ by

σ =
FWHM
2
√

2 ln(2)
. (2.2)

In addition to the smearing, a coincidence condition has been applied to the data, i.e. only
events where the energy deposition in both modules is non-zero are being tracked. The
results are shown in figure 2.3. Looking at the amount of entries in the two histograms, it
can be seen that the number of 2γ events is now three times as large as the number of 3γ
events. This means that the signal-to-background ratio can be improved significantly by
only considering events satisfying the coincidence condition. Of course, this procedure is
not perfect as it also discards some of the 2γ events, but it is a step in the right direction.

Figure 2.3: 2D histogram of the total energy deposited in the two modules of the SDMD
(cf. fig. 2.1) for 2γ (left) and 3γ (right) events with Gaussian energy smearing of 8%. In
both cases, a coincidence condition has been imposed, i.e. only events where the energy
deposition in both modules is non-zero are being considered.

2.3 Tuning of the Signal and Background Efficiency

In the last section, it has been shown that the signal and background efficiencies can
be improved by only considering events depositing energies in both modules. This can
be pushed further by requiring that the energy deposition in both modules has to not
only be non-zero, but lie above a threshold Emodule. Furthermore, before checking for the
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coincidence condition, energy detections of less than Ecrystal measured in a single crystal
can be discarded. The results obtained with different thresholds are shown in table 2.3.
The 2γ and 3γ efficiencies are defined as the fraction of 2γ and 3γ events that are not
filtered out by the cut. It can be seen that the signal and background efficiencies strongly
depend on the choice of the thresholds Ecrystal and Ecut. Which values are chosen in the
end depends on the experimental conditions and the desired signal-to-background ratio.
In the next section, the data after the cuts have been applied will be used to train different
machine learning models to improve the quality of the discrimination even further.

Ecrystal [keV] Ecut [keV] 2γ Eff. [%] 3γ Eff. [%]
1 1 40.10 6.76
100 400 22.66 1.89
100 450 19.87 0.86
100 480 16.73 0.39
400 400 9.32 0.74
450 450 8.01 0.26
480 480 6.90 0.07

Table 2.1: Optimizing the signal and background efficiencies using a cut-based approach.
All energies below Ecrystal detected in a LYSO crystal are discarded. Afterwards, the
crystals of the two modules are integrated over separately and only events with a total
energy deposition above Ecut in both modules are being considered. The 2γ and 3γ
efficiencies are defined as the fraction of 2γ and 3γ events that survive the cut.
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Chapter 3

Multivariate Analysis (MVA)

In the last chapter, the response of the SDMD to 2γ and 3γ events has been simulated.
Furthermore, the influence of different energy cuts on the signal and background efficien-
cies has been investigated. In this chapter, the efficiencies will be improved even further
by using machine learning (ML) algorithms to discriminate between 2γ and 3γ events
based on the data after the cut. The plan is to use the cut-based approach to do a first
pre-selection and then make use of more sophisticated tools to perform the fine-tuning.
For this purpose the performance of three different ML models will be compared:

• Gradient Boosted Decision Tree (GBDT)

• Ada Boosted Decision Tree (ABDT)

• Multi Layer Perceptron (MLP).

In the following, the models and evaluation metrics will briefly be introduced. We will
then investigate how the combined model of cut and ML performs on the dataset and
how different cut parameters influence the signal and background efficiencies.

3.1 Models and Metrics

Before beginning with the analysis, the models and evaluation metrics have to be reviewed.
For all of the models at use, a demonstration code is provided in this GitLab repository.

9
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3.1.1 Decision Tree (DT)

A DT is an ML algorithm commonly used for classification tasks. It works by recursively
splitting the dataset into subsets depending on the value of a certain feature Ei. If the
value of Ei is below a given threshold Ecut,i, the event is assigned to the left child node,
otherwise to the right child node. This process is repeated until a stopping criterion is
met, e.g. a maximum depth of the tree. At each node, it is possible to determine the
optimal feature Ei and threshold Ecut,i by minimizing a loss function. The leaf nodes of
the tree are assigned a class label, which is the majority class of the events that have been
sorted into the leaf node during the training. A sketch of a DT is shown in figure 3.1.

The biggest problem of DTs is that they tend to overfit the training data. This can
easily be seen by imagining a DT with infinite depth and the stopping criterion being the
presence of only one data point in each leaf node. In this case, the DT would perfectly
classify the training data, but fail to generalize to unseen data. A common way to
counteract this is to use ensemble methods, which combine multiple DTs to form a more
robust model. One such method is boosting, which trains multiple shallow DTs that have
a poor performance on their own in a sequential manner, where each new DT is trained on
the mistakes of its predecessors. In our case, we will use two different boosting methods,
AdaBoost (Adaptive Boosting) and Gradient Boosting. AdaBoost adjusts the weights
of misclassified instances to focus subsequent learners on harder cases, while Gradient
Boosting sequentially optimizes a loss function by training new learners on the residuals
of previous learners’ predictions.

Ei < Ecut,i?

Ej < Ecut,j?

2γ

Yes

3γ

No

Yes

Ek < Ecut,k?

3γ

Yes

3γ

No

No

Figure 3.1: Sketch of a simple decision tree (DT). At each node, the data is being split
depending on the value of a feature Ei. If the value of Ei is below a threshold Ecut,i,
the event is assigned to the left, otherwise to the right child node. At each leaf node, an
optimal feature and an optimal threshold can be found by minimizing an appropriate loss
function. The leaf nodes are assigned a class label, which is the majority class of events
that have been sorted into the leaf node in the training process.
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3.1.2 Multi Layer Perceptron (MLP)

An MLP is a specific type of an artificial neural network. It takes in an input vector x

consisting of n features, which are being multiplied by a weight matrix W(1) and added
to a bias vector b(1). The result is then passed through and activation function σ to form
the output of the first layer a(1), making the process non-linear. This is repeated for L
layers, where the output of the l-th layer is the input of the (l + 1)-th layer. The output
of the last layer is then used to make a prediction. In the training process, the weights
and biases are adjusted to minimize an appropriate loss function. The backpropagation
algorithm is used to calculate the gradients of the loss function with respect to the weights
and biases, which are then used to update the weights and biases. A sketch of an MLP is
shown in Figure 3.1.2. In the drawing, we have 3 input features, 2 hidden layers with 5
neurons each and 1 output neuron. In our case, we will use 256 input features, 2 hidden
layers with 100 neurons each and 1 output neuron. As an activation function, we will use
the rectified linear unit (ReLU) function for the hidden layers

ReLU(x) = max(0, x), (3.1)

and the sigmoid function for the output layer given by

σ(x) =
1

1 + exp(−x)
. (3.2)

The action of both functions on a given input vector is defined component-wise.

3.1.3 Receiver Operator Characteristic (ROC) Curve

A good model should be able to accept many signal events while accepting only few
background events. The signal acceptance rate is usually referred to as the true positive
rate (TPR), while the background acceptance rate is called the false positive rate (FPR).
At the end of the classification, all models predict a value between 0 and 1 for each event.
We can then choose a threshold between 0 and 1, where all events with a predicted value
above the threshold are classified as signal and all other events as background. The lower
the threshold, the higher the probability to correctly classify an actual signal event as
a signal event, but also to confuse an actual background event with a signal event. On
the other hand, the higher the threshold, the lower the probability to confuse an actual
background event with a signal event, but also to correctly classify an actual signal event
as a signal event.
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Figure 3.2: Sketch of a multi layer perceptron (MLP). The input vector x is multiplied
by a weight matrix W(1) (indicated by the arrows) and added to a bias vector b(1) (not
shown). The result is then passed through an activation function σ (not shown) to form
the output of the first layer a(1). This process is repeated for L layers (L = 2 in the
picture), where the output of the l-th layer is the input of the (l+1)-th layer. The output
of the last layer is then used to make a prediction. In the training process, the weights
and biases are adjusted to minimize an appropriate loss function.

The ROC curve graphically illustrates this trade-off by plotting the TPR as a function of
the FPR. For a random classifier, the TPR and FPR are equal, resulting in a linear ROC
curve with a slope of 1. In contrast, a perfect classifier has a strong separation between
signal and background events and therefore has a TPR of 1 as soon as the FPR becomes
non-zero. The area under the ROC curve (AUC) is a common metric to quantify the
performance of a binary classifier. A perfect classifier has an AUC score of 1, while a
random classifier has an AUC score of 0.5.

The AUC score will be one of the metrics used to quantify the performance of the models.
In the end, we are interested in having a high TPR and a low FPR. The signal-to-
background ratio of the model can then be computed by

η =
TPR
FPR

n2γ

n3γ

, (3.3)

where n2γ and n3γ are the number of 2γ and 3γ events within the raw data without any
processing.
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3.2 Data Preprocessing

In order to support the ML models with their task, the data needs to be preprocessed in an
appropriate way. The dataset consists of 256 input features which are the energy deposits
in the 128 LYSO crystals of the two modules. A very simple preprocessing strategy has
been applied in the cut-based approach, where the 256 input features have been reduced to
2 by integrating over the energy deposits in the crystals of each module. Unfortunately,
this method erases most of the geometric information of the detector, which contains
valuable information due to the different phase space distributions of the two events. The
algorithms are expected to extract to work based on the geometric information hidden in
the data, which is why a different preprocessing strategy has to be applied. One option is
to apply a principal component analysis (PCA). In short, PCA exploits the fact that the
covariance matrix of the dataset is symmetric and therefore possesses an orthogonal basis
of eigenvectors covering the entire feature space. Switching from the canonical basis (the
energy deposits in the crystals) to the eigenbasis of the covariance matrix corresponds
to a re-arrangement of the features. The absolute values of the eigenvalues measure how
relevant the corresponding eigenvector is for the dataset1. To reduce the dimensionality
of the data, one could simply discard the eigenvectors with smaller eigenvalues. In this
particular case however, all of the eigenvectors will be kept. After the PCA, the data
is normalized to have zero mean and unit variance. This is important because the ML
algorithms at use are sensitive to the scale of the input features and have been optimized
for standardized data.

Moreover, it should be noted that as has been shown in figure 2.2, the raw data output
of the simulation contains more than double the number of 3γ than 2γ events. This
imbalance in the dataset can lead to a bias in the ML algorithms. To counteract this,
all of the surplus 3γ events have been removed from the dataset such that it contains
the same amount of 2γ and 3γ events. In the future, it would also be interesting to
create more data using data augmentation techniques, such as adding noise to the data
or rotating the dataset. For the scope of this thesis, however, this has not been done.

3.3 Model Training

It is now time to train the three models introduced in section 3.1 on the preprocessed
dataset. In order to get optimal results, it is beneficial to feed as much data as possible into

1Actually, this is only true if the values of the features have a mean of zero. Therefore, the data is set
to be zero-centered in the process of the PCA, and then normalized to have unit variance.
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the training process. However, the data generation and preprocessing is computationally
expensive, making it necessary to perform a trade-off between the amount of data and
the computational resources available. In figure 3.3, it is shown how the AUC score and
the accuracy2 of the models change with an increasing number of training samples. For
both the training and the evaluation, a balanced dataset with the same number of 2γ
and 3γ events and a relative energy smearing of 8 has been used. Each evaluation has
been performed with a balanced dataset containing 2 · 103 events. For each model and for
each number of the sample size, the evaluation has been repeated 5 times. The mean has
been taken as the final result and the error bars correspond to the standard deviation. As
can be seen, the GBDT model converges at a sample size of 104, while the ABDT seems
to need even less data. The MLP on the other hand does not quite converge, but the
rate of improvement decreases around a sample size of 104. Therefore, for future training
processes, a balanced dataset containing 104 events will be used. It should however be
kept in mind that better results could in principle be achieved for the MLP by increasing
the sample size even further.

3.4 Model Evaluation

It has been shown that a balanced training dataset containing 104 events is enough for
the models to get sufficiently good results. To construct a discriminator, the three ML
models have been trained based on the output of the cut-based approach for different cut
parameters Ecrystal and Emodule, using the same values as in 2.3. The evaluations have been
performed using a balanced dataset with 2 · 103 events. The results are shown in table
3.1. As can be seen, the GBDT model is consistently outperforming both the ABDT and
the MLP model as it achieves a higher 2γ efficiency and a lower 3γ efficiency for all cut
parameters. Considering that the training time of the GBDT model is also significantly
shorter than the training times of the ABDT and MLP model, the GBDT is the best
choice amongst the tested models for the discrimination of 2γ and 3γ events

For each ML model, a discrimination threshold of 0.5 has been chosen. However, the
signal efficiency and the background rejection rate can be changed by adjusting this
threshold and depending on the experimental conditions, a different threshold might be
more suitable. An illustration of this is shown in figure 3.4 using the GBDT model being
trained on data filtered with Ecrystal = 480 keV and Emodule = 480 keV (see the last entry
for the GBDT model in table 3.1). On the left, the 2γ and 3γ efficiencies are shown as a

2The accuracy is defined as the number of correctly classified events divided by the total amount of
events
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Figure 3.3: Investigating the performance of the models as a function of the number of
training samples using the AUC score (left) and the accuracy (right) of the models as
metrics. The training has been performed with a balanced dataset containing the same
number of 2γ and 3γ events and a relative energy smearing of 8%. Each evaluation has
been performed with a balanced dataset containing 2 · 103 events. For each model and for
each number of the sample size, the evaluation has been repeated 5 times. The mean has
been taken as the final result and the error bars correspond to the standard deviation.
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Ecrystal [keV] Emodule [keV] 2γ Eff. [%] 3γ Eff. 2γ Eff. [%] 3γ Eff.
Cut Only Cut & GBDT

1 1 40.10 6.76 32.40 1.22
100 400 22.66 1.89 18.56 0.42
100 450 19.87 0.86 15.88 0.25
100 480 16.73 0.39 12.36 0.11
400 400 9.32 0.74 7.97 0.11
450 450 8.01 0.26 6.85 0.05
480 480 6.90 0.07 5.53 0.02

Cut & ABDT Cut & MLP
1 1 30.87 1.42 31.52 1.64
100 400 18.45 0.44 17.63 0.46
100 450 14.84 0.26 14.31 0.25
100 480 11.44 0.12 11.69 0.13
400 400 7.90 0.14 7.76 0.16
450 450 6.75 0.05 6.42 0.06
480 480 5.36 0.02 5.00 0.02

Table 3.1: Results of the model evaluation. We first apply the cut-based approach with
different cut parameters Ecrystal and Emodule. After the cut, a classification is performed
by one of the three models. The signal efficiencies are computed by dividing the number
of correctly classified 2γ and 3γ events by the total number of 2γ and 3γ events before
applying a cut (corresponding to TPR and FPR).
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function of the threshold. On the right, the ROC curve is shown, which is visualizing the
possible combinations of the simultaneously achievable signal acceptance and background
rejection rates by plotting the 2γ efficiency as a function of the 3γ efficiency. The red line
in the left plot and the red cross in the right plot indicate the results for a discrimination
threshold of 0.5. The efficiencies only refer to the classification by the GBDT. In order
to get the efficiencies for the full discriminator the rates need to be multiplied by the last
entries of the “cut only” column in table 3.1.

Figure 3.4: Adapting the 2γ and 3γ efficiencies by changing the discrimination threshold
for the GBDT model. The model is trained on data filtered with Ecrystal = 480 keV and
Emodule = 480 keV. The left plot shows the 2γ and 3γ efficiencies as a function of the
threshold. The right plot displays the ROC curve, visualizing the possible combinations
of simultaneously achievable signal acceptance and background rejection rates. The red
line and the red cross indicate the results for a discrimination threshold of 0.5. The
efficiencies shown only refer to the classification by the GBDT. To get the efficiencies for
the combined cut and GBDT model, the rates need to be multiplied by the last entries
of the “cut only” column in table 3.1.
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Chapter 4

Measurements

So far, the SDMD response to 2γ and 3γ events has been simulated and a model to dis-
criminate between the two has been developed. Based on the model parameters (Ecrystal,
Emodule, and discriminator threshold), it is possible to achieve different 2γ and 3γ effi-
ciencies, which are summarized in table 3.1. In this chapter, the experimental setup and
measurement principle will be described. Afterwards, the data will be preprocessed and
put in a form that can be used for the model training and evaluation. In this context, two
main challenges arise: Firstly, the simulated data comes with the information of which en-
ergy deposits belong to the same event. This is not the case for the experimental data, so
a clustering algorithm for the individual measurements has to be developed. Secondly, the
data in the simulation is labeled, meaning that the true decay type of each event is known.
This is also not true for the measured data, so a labeling procedure has to be introduced.
Both problems need to be solved before any further analysis can be performed.

4.1 Measurement Principle

In order to address the two problems mentioned above, the measurement principle has
to be understood. A schematic of the most important components of the setup is shown
in figure 4.1. A radioactive 22Na source undergoes a β+ decay, emitting a positron which
is magnetically guided to an SiO2 target, where it is accelerated with a voltage around
2 keV to 4 keV and either forms Ps, i.e. o-Ps or p-Ps, or annihilates into two photons.
In this process, secondary electrons (SEs) are emitted, which are being accelerated in
the opposite direction towards the micro-channel plate (MCP) detector due to the sign
difference of their charge. The SEs can therefore be used to tag the arrival of the positron
at the target. The two modules of the SDMD detector from figure 2.1 are placed at
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opposite sites of the target and are used to detect the emitted photons.

Figure 4.1: Positron tagging scheme with a micro-channel plate (MCP). The positron
beam (blue helix, coming from the left) is deflected off axis by the deflection plates
(red and green) to bypass the MCP. Secondary Electrons (SE, red helix) are released
when the positron impinges the SiO2 target and guided back and detected by the MCP.
Note that the positron and electron trajectories are only sketches, the actual deflection is
perpendicular to the drawing plan [1].

4.2 Data Preparation

It has already been said that for the experimentally obtained data, two additional steps
have to be performed before the analysis: The individual measurements have to be clus-
tered to events, which then need to be labeled. In the following, these problems will be
tackled.

4.2.1 Clustering

The signal of the SDMD is continuously read out by two ASICSs. Every time an SE hits
the MCP, all measurements of the SDMD until 1 µs before the SE hit are stored. Each
measurement contains the following information:

• Energy deposit exceeding a certain threshold

• ID of the crystal that was hit by the photon

• Trigger time when the SEs hit the MCP
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• Time difference between energy deposit and trigger time.

For some trigger times, the ASICs record multiple hits because multiple photons are
being emitted. In order for two measurements to belong to the same event, it is therefore
a necessary condition that the measurements have the same trigger time. Furthermore,
using the fact that the distance between the two detector modules in reality is of the order
of 1m and the speed of light c is roughly given by 3 · 108ms−1, we can estimate that the
time difference between two hits belonging to the same event can be at most 3.33 ns.
Thus, a sufficient condition for two measurement to belong to the same event is that the
time difference between two measurements does not exceed this value. A histogram of
the photon numbers associated to the same event by the clustering procedure is shown in
the left plot of figure 4.2. The graphic shows that the majority of events only contain a
single photon. As there are no single photon events, it is clear that the other photon of
the event is not recorded by the SDMD, either because it is not hitting the detector or
because of the limited efficiency of the crystals.

Figure 4.2: The clustering procedure gathers single measurements into events based on
their time tags. The left plot shows the histogram of the number of measurements per
cluster. After the clustering, the mean time delay and the total energy deposit of each
cluster has been calculated. A fraction of the clusters is shown in the right plot. In order
to label the clusters, one can use the fact that p-Ps decays into two photons with a lifetime
of 0.1244 ns [5]. On the other hand, o-Ps decays into three photons with a much longer
lifetime of 142 ns [3, 4]. Clusters with short time delays can therefore be classified as 2γ
events. For the late events, the situation is more complicated, as they get contributions
from 2γ pick-off annihilations.
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4.2.2 Labeling

Having solved the clustering problem, it is still necessary to find a way of labeling the
events. This can be done by exploiting the fact that p-Ps decays into 2γ with a lifetime of
0.1244 ns [5], whereas o-Ps decays into 3γ with a much longer lifetime of 142 ns [3, 4]. It is
therefore reasonable to label clusters with a short time delay as 2γ events. Unfortunately,
it is not possible to similarly label late events as 3γ events because they get contributions
from 2γ pick-off annihilations and hence consist of a mixture of 2γ and 3γ events. Of
course, this complication is the reason why a good discrimination model is needed in the
first place. In order to determine the time delay of a cluster, the mean delay within the
cluster is calculated. It is possible to additionally compute the total energy deposit of
the cluster and plot the two quantities in a scatter plot, as shown in the right of figure
4.2. The blue stripe indicates the region where p-Ps decays are expected, whereas the red
stripe tags the time interval of o-Ps decays (including 2γ pick-off events).

To conclude, it is possible to extract 2γ events from the data based on the time delay.
However, one cannot easily extract 3γ events in a similar manner because the late events
are a mixture of 2γ and 3γ events. There are several approaches that could be used to
solve this problem. One could for example train an unsupervised clustering algorithm on
the 2γ events and then apply it to the late events to filter out the 2γ pick-off annihilations.
Another approach would be to make the simulation more realistic by comparing simulated
and measured 2γ events. Once the simulation is sufficiently realistic, it could be used to
generate 3γ events and thus create a labeled set out of measured 2γ and simulated 3γ

events. Both approaches however require more time and resources than are available for
this thesis and will therefore not be pursued further.

4.2.3 A Look on the Final Data

Although the data is not labeled and we would need more realistic Geant4 simulations to
create an appropriate training set, it is still interesting to take a closer look at the data
in order to see to which extent the simulation is able to resemble the real data. For this
reason, the plots shown in figures 2.2 and 2.3 have been recreated for the experiment. In
order to do this, the total energy deposit in the two modules has to be computed for each
group. As discussed, a clear separation into 2γ and 3γ events is not possible for the data,
making it necessary to take into account all events simultaneously. The result is shown
in figure 4.3. As can be seen, the data is much more spread out and the back-to-back
peak where the energy deposit in module A and B lies at 511 keV is not there. This
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is a sign that something is wrong either with the simulation or the experimental data.
The sufficient condition of the clustering procedure might be responsible for the missing
peak in part, as it removes 95% of events where the energy deposits in both modules are
around 511 keV. However, this is not the full explanation as the amount of back-to-back
events in the data after the necessary condition is very low by itself.
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Figure 4.3: After the clustering, the total energy deposit in the two modules of the
SDMD can be computed for each group. As it is not possible to separate 2γ and 3γ
events for the experimental data, all events need to be taken into account simultaneously.
The correlation plot shows the total energy deposit in module A and module B for each
group. The two one dimensional histograms show the energy deposit in module A and B
independently.
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Conclusion and Outlook

This thesis has presented an approach to discriminate between 2γ and 3γ events based
on energy depositions in the SDMD. This is a necessary step to isolate the o-Ps decay
width in vacuum from the measured value, which is getting unwanted contributions from
pick-off events due to the surrounding material. The approach is based on a cut-based
pre-selection of events, followed by an ML algorithm for the fine-tuning. The model has
been trained and tested using data generated with the Geant4 simulation framework.
An extensive performance analysis of the discriminator has been computed for a wide
range of the cut parameters and different ML tools. Depending on the cut values and the
discrimination threshold, different 2γ and 3γ efficiencies can be achieved, summarized in
table 3.1. A specific choice of the model parameters has to be made based on experimental
considerations, such as the event rate and the desired signal-to-background ratio.

In order to apply the discriminator to real data, the experimental data has to be clus-
tered into events. This has been done based on the time difference between the energy
depositions in the detector. The resulting clusters can however not be used to form a
full training set, as it is only possible to isolate 2γ events from the data using the p-Ps
decay peak, but not 3γ events because the o-Ps decays are modified by pick-off events. In
the future, one could therefore try to assemble a training set using actual 2γ events and
simulated 3γ events, which need to be generated more realistically.

To see the extent of deviation between the simulated and the real data, correlation plots
of the energy depositions in the two SDMD modules have been created for both cases (see
figures 2.2 and 2.3 for the simulated and 4.3 for the real data). The 511 keV peak does
not show up in the real data, which is a problem that has not been solved yet and should
be addressed in the future.
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All the data and code used in this thesis have been published for reproducibility and
further research. The code can be found on this GitLab repository and the data can be
accessed on this Polybox.

https://gitlab.ethz.ch/swittum/discrimination-of-two-and-three-photon-events-in-positronium-annihilations
https://polybox.ethz.ch/index.php/s/00KsOVBVwh2LkA4
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